info@marketresearchfuture.com   📞  +1 (855) 661-4441(US)   📞  +44 1720 412 167(UK)
Certified Global Research Member
Isomar fd.webp Wcrc 57.webp
Key Questions Answered
  • Global Market Outlook
  • In-depth analysis of global and regional trends
  • Analyze and identify the major players in the market, their market share, key developments, etc.
  • To understand the capability of the major players based on products offered, financials, and strategies.
  • Identify disrupting products, companies, and trends.
  • To identify opportunities in the market.
  • Analyze the key challenges in the market.
  • Analyze the regional penetration of players, products, and services in the market.
  • Comparison of major players financial performance.
  • Evaluate strategies adopted by major players.
  • Recommendations
Why Choose Market Research Future?
  • Vigorous research methodologies for specific market.
  • Knowledge partners across the globe
  • Large network of partner consultants.
  • Ever-increasing/ Escalating data base with quarterly monitoring of various markets
  • Trusted by fortune 500 companies/startups/ universities/organizations
  • Large database of 5000+ markets reports.
  • Effective and prompt pre- and post-sales support.

Advanced Sintering Technologies Market Research Report Information by Type (Conventional Pressureless Sintering, Hot Pressing, Spark Plasma Sintering, Microwave Sintering, Others), by Application (Aerospace, Automotive, Electronics, Energy, Industrial, Medical, and Others), and by Region (North America, Europe, Asia-Pacific, Latin America, and Middle East & Africa)—Forecast till 2028


ID: MRFR/CnM/9295-HCR | 180 Pages | Author: Priya Nagrale| January 2025

Advanced Sintering Technologies Market overview


advanced sintering technologies market was valued at USD 964.14 million in 2020 and is expected to register a CAGR of 7.49% to reach USD 1,657.50 million by the end of 2028.   


Sintering is fusing particles into a single solid mass by applying pressure and heat to the materials without melting them. Metal, ceramic, plastic, and other materials are commonly sintered products. Powder sintering is a technique for making metal powders stronger and sturdier. In metallurgy, the sintering process involves heat treatment of metal powders, as well as other materials such as alloying elements, in a single, elongated furnace with different temperature zones. To avoid melting, the sintering temperature is kept below the melting point of the materials. Sintering can be used for a variety of purposes. It is frequently used on metals with high melting points, and one of its main applications is to join metal particles together. Sintering can also be used to reduce the porosity of a material's surface, which can improve its properties.


The protuberant factors favoring the global market growth are the growing demand for advanced sintering technologies from the automotive and aerospace industries. The growth of the automotive industry coupled with the rising demand for lightweight and high-strength components is expected to boost demand for advanced sintering technologies in automotive applications, including transmissions, engines, and chassis components. Sintering technology is steadily gaining traction in the global automotive industry. Automotive sintered components are used in transmissions, engines, chassis, door lock parts, steering, suspension, alternators, brake parts, seat assembly components, and others. Sintered parts, such as bearings and gears, are used in a wide range of vehicles. However, depending on the application, the size, strength, and function of these bearings and gears may vary. Due to the complexities and criticalities involved in the components, there will be an increase in demand for automotive sintered components as BS-VI emission norms come into effect in April 2020.


Sintering of ceramics is one of the oldest and common applications of advanced sintering technologies. Some of the ceramic materials include Alumina (Al2O3), Zirconia (ZrO2), Aluminium Nitride, Boron Nitride (BN), Silicon Nitride (Si3N4), and Silicon Carbide (SiC), amongst others. Sintered ceramic products offer various advantages, including hardness, high mechanical resistance, dimensional stability (even at high temperatures), resistance to wear and corrosion, electrically insulating, resistance to chemical products, and ability to withstand high temperatures. Sintered ceramic products are widely used in the aerospace industry to manufacture aircraft components such as gas turbine engines, engine nozzles, tail cones, nose caps, rudder, fins, leading edges, body flaps, panels, and other engine components. Brakes, bearings, seals, and other wear-resistant components; armor for helicopters; electronic thermal management structures; lightweight optical components (e.g., silicon carbide mirrors); radiators (i.e., cooling systems) for space vehicles; and windshield coatings are some of the other applications of sintered ceramic products in the aerospace industry. Ceramic components for the aerospace industry frequently have complex shapes, which has prompted the development of new technologies such as 3D printing.


However, fluctuating raw material prices are a key restraint in this market. Iron, steel, brass, and copper are majorly used metals in sintering technologies. The price of iron ore has fluctuated over the past five years greatly as its global demand has witnessed ups and downs with economic recession and expansion. The price of iron is primarily determined by the ability of iron suppliers to extract and transport the product, as well as the demand for goods and services that require iron, majorly the steel industry. The other factors include economic growth, interest rates, availability and attractiveness of substitute goods, and political considerations. Moreover, a few key players, both on the supply and demand side, dominate the iron ore market. As per the US Geological Survey, the top five iron ore-producing countries control about 85% of the production and 73% of reserves.


COVID Impact Analysis


Many key industries have been negatively impacted by the global slowdown in manufacturing output that began in the second half of 2019 and the more recent rapid spread of the coronavirus (COVID-19) around the world. The preventive and protective measures taken by the government, public health officers, and producers in response to COVID-19 have had and will continue to have a negative impact on businesses, suppliers, distribution channels, and end users, including indefinite business shutdowns or disruptions, reduced operations, declined ability to supply products or decreased demand for products. The COVID-19, in particular, has forced many manufacturing industries in the world's most developed economies to reduce output, resulting in lower demand for raw materials like metals. As a result, metal prices have been fluctuating since the beginning of 2020.   


According to a recent survey by the National Association of Manufacturers, 53% of manufacturing companies expect COVID-19 to change their operations in the coming months, and 35% are currently experiencing supply chain disruptions. Organizations must be able to adapt quickly to operate in a rapidly changing business environment. Increasing complexity and the need for shorter development and product life cycles have been driving complexity and the need for shorter development and product life cycles for years. The impact of COVID-19 has accelerated these trends, and many businesses must now adapt to increasingly difficult market conditions. As these disruptions emerge at unprecedented rates and magnitudes, businesses are having to adapt and respond in an ever-changing global environment to de-risk supply chains, safely maintain operations, continue production, and ensure the availability of their products.


The global advanced sintering technologies market faced a deep recession caused by the effects of lockdowns in most regions to slow down the spread of COVID-19. As a result, the demand has virtually dampened during the period and is unlikely to be revived until the situation comes back to normal. The major consumers of advanced sintering technologies such as automotive, aerospace, and electronics had shut down their production facilities resulting in a decline in demand for technologies globally. However, with the lift of lockdown measures and trade restrictions, the demand for advanced sintering technologies is expected to gain pace and drive market growth.


Supply Chain Analysis


The supply chain analysis evaluates every stage and step taken by stakeholders involved throughout the production and distribution of advanced sintering technologies. The supply chain includes raw materials and suppliers, advanced sintering technologies producers, distribution channels, and end-use industries.


Some of the key global suppliers of raw materials include ArcelorMittal SA, China BaowuSteel Group Corp., Ltd, NSSMC Group, Codelco, BHP, and others.


Segmentation


The global advanced sintering technologies market has been segmented on the basis of type, application, and region.


Based on type, the market has been segmented into conventional pressureless sintering, hot pressing, spark plasma sintering, microwave sintering, and others.


Global Advanced Sintering Technologies Market Revenue, by Application, 2020 (USD Million)Advanced Sintering Technologies Market Revenue, by Application, 2020 (USD Million) Sources: MRFR Analysis


On the basis of application, the market has been segmented into aerospace, automotive, electronics, energy, industrial, medical, and others. Among these, the automotive segment accounted for the largest share of 53.61% of the global advanced sintering technologies market and is anticipated to grow at 7.81% throughout the forecast period. This growth is mainly attributed to the growing demand for complex structures, high precision, superior mechanical qualities, and cost-effective automotive components.


Global Advanced Sintering Technologies Market Share, by Region, 2020 (%)Advanced Sintering Technologies Market Share, by Region, 2020 (%) Sources: MRFR Analysis


Regional Analysis


The global advanced sintering technologies market has been studied across Asia-Pacific, North America, Europe, Latin America, and the Middle East & Africa. North America held the biggest market share due to technical improvements and rising acceptance of technology in a diverse range of sectors. The highest share of North America is due to technological breakthroughs and the increased acceptance of technology in a wide range of industries. Furthermore, increasing demand from various end-use industries, particularly the aerospace and defense sector, increasing penetration of sintering technologies in medical and automotive, growth in demand for fuel-efficient vehicles, and rapidly increasing global industrialization are major growth drivers for the powder metallurgy market.


Key Players


Key players profiled in this market include ALD Vacuum Technologies (Germany), FCT Systeme (Germany), Linn High Therm (Germany), BTU International (US), Sumitomo Heavy Industries Ltd. (Japan), EOS (Germany), Shanghai Gehang Vacuum Technology Co., Ltd (China), and ChinaSavvy (China).


Market Segmentation


Global Advanced Sintering Technologies Market, by Type



  • Conventional Pressureless Sintering

  • Hot Pressing

  • Spark Plasma Sintering

  • Microwave Sintering

  • Others


Global Advanced sintering technologies Market, by Application



  • Aerospace

  • Automotive

  • Electronics

  • Energy

  • Industrial

  • Medical

  • Others


Global Advanced sintering technologies Market, by Region




  • North America

    • US

    • Canada




  • Europe

    • Germany

    • Russia

    • UK

    • France

    • Italy

    • Nordic

    • Rest of Europe




  • Asia-Pacific

    • China

    • India

    • Japan

    • Australia & New Zealand

    • South Korea

    • Southeast Asia

    • Rest of Asia-Pacific




  • Latin America

    • Brazil

    • Mexico

    • Rest of Latin America




  • Middle East & Africa

    • Brazil

    • Mexico

    • Rest of Latin America



  • Brazil


Available Additional Customizations



  • Customer Analysis of Major Consumers

  • Additional Company Profiles

  • Trade Data (Imports and Exports)


Intended Audience



  • Advanced sintering technologies manufacturers

  • Suppliers and traders of advanced sintering technologies and related products

  • Government, associations, and industrial associations

  • Investors and trade experts

  • Consulting in chemical experts

Advanced Sintering Technologies Market

advanced sintering technologies market was valued at USD 964.14 million in 2020 and is expected to register a CAGR of 7.49% to reach USD 1,657.50 million by the end of 2028.

Segmentation
By Type Conventional Pressureless Sintering Hot Pressing Spark Plasma Sintering Microwave Sintering Others
By Application Aerospace Automotive Electronics Energy Industrial Medical Others
Key Players
Companies Profiled   ALD Vacuum Technologies (Germany)   FCT Systeme (Germany)   Linn High Therm (Germany)   BTU International (US)   Sumitomo Heavy Industries Ltd. (Japan)   EOS (Germany)   Shanghai Gehang Vacuum Technology Co.Ltd (China)   ChinaSavvy (China)
Drivers
Market Driving Forces   Growth in demand for fuel-efficient vehicles and rapidly increasing global industrialization are major growth drivers for the powder metallurgy market.

Leading companies partner with us for data-driven Insights.

client_1 client_2 client_3 client_4 client_5 client_6 client_7 client_8 client_9 client_10

Kindly complete the form below to receive a free sample of this Report

Please fill in Business Email for Quick Response

We do not share your information with anyone. However, we may send you emails based on your report interest from time to time. You may contact us at any time to opt-out.

Purchase Option
Single User $ 4,950
Multiuser License $ 5,950
Enterprise User $ 7,250
Compare Licenses
Tailored for You
  • Dedicated Research on any specifics segment or region.
  • Focused Research on specific players in the market.
  • Custom Report based only on your requirements.
  • Flexibility to add or subtract any chapter in the study.
  • Historic data from 2014 and forecasts outlook till 2040.
  • Flexibility of providing data/insights in formats (PDF, PPT, Excel).
  • Provide cross segmentation in applicable scenario/markets.